Local Convergence of Critical Random Trees and Continuous-State Branching Processes

نویسندگان

چکیده

We study the local convergence of critical Galton–Watson trees and Lévy under various conditionings. Assuming a very general monotonicity property on measurable functions random trees, we show that conditioned to have large function values always converge locally immortal trees. also derive ratio limit for satisfying property. Finally continuous-state branching processes, prove similar result.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous state branching processes in random environment: The Brownian case

Motivated by the works of Böinghoff and Huzenthaler [6] and Bansaye et al. [1], we introduce continuous state branching processes in a Brownian random environment. Roughly speaking, a process in this class behaves as a continuous state branching process but its dynamics are perturbed by an independent Brownian motion with drift. More precisely, we define a continuous state branching process in ...

متن کامل

Random trees and general branching processes

We consider a tree that grows randomly in time. Each time a new vertex appears, it chooses exactly one of the existing vertices and attaches to it. The probability that the new vertex chooses vertex x is proportional to w(deg(x)), a weight function of the actual degree of x. The weight function w : N → R+ is the parameter of the model. In [4] and [11] the authors derive the asymptotic degree di...

متن کامل

Disassortativity of random critical branching trees.

Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, t...

متن کامل

Continuous-state Branching Processes and Self-similarity

In this paper we study the α-stable continuous-state branching processes (for α ∈ (1, 2]) and the α-stable continuous-state branching processes conditioned never to become extinct in the light of positive self-similarity. Understanding the interaction of the Lamperti transformation for continuous-state branching processes and the Lamperti transformation for positive, self-similar Markov process...

متن کامل

Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees

We establish a second-order almost sure limit theorem for the minimal position in a one-dimensional super-critical branching random walk, and also prove a martingale convergence theorem which answers a question of Biggins and Kyprianou [Electron. J. Probab. 10 (2005) 609–631]. Our method applies, furthermore, to the study of directed polymers on a disordered tree. In particular, we give a rigor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2021

ISSN: ['1572-9230', '0894-9840']

DOI: https://doi.org/10.1007/s10959-021-01074-9